Abstract:The rapid advancement of Large Language Models (LLMs) has catalyzed the development of autonomous agents capable of navigating complex environments. However, existing evaluations primarily adopt a deductive paradigm, where agents execute tasks based on explicitly provided rules and static goals, often within limited planning horizons. Crucially, this neglects the inductive necessity for agents to discover latent transition laws from experience autonomously, which is the cornerstone for enabling agentic foresight and sustaining strategic coherence. To bridge this gap, we introduce OdysseyArena, which re-centers agent evaluation on long-horizon, active, and inductive interactions. We formalize and instantiate four primitives, translating abstract transition dynamics into concrete interactive environments. Building upon this, we establish OdysseyArena-Lite for standardized benchmarking, providing a set of 120 tasks to measure an agent's inductive efficiency and long-horizon discovery. Pushing further, we introduce OdysseyArena-Challenge to stress-test agent stability across extreme interaction horizons (e.g., > 200 steps). Extensive experiments on 15+ leading LLMs reveal that even frontier models exhibit a deficiency in inductive scenarios, identifying a critical bottleneck in the pursuit of autonomous discovery in complex environments. Our code and data are available at https://github.com/xufangzhi/Odyssey-Arena
Abstract:Training reinforcement learning (RL) systems in real-world environments remains challenging due to noisy supervision and poor out-of-domain (OOD) generalization, especially in LLM post-training. Recent distributional RL methods improve robustness by modeling values with multiple quantile points, but they still learn each quantile independently as a scalar. This results in rough-grained value representations that lack fine-grained conditioning on state information, struggling under complex and OOD conditions. We propose DFPO (Distributional Value Flow Policy Optimization with Conditional Risk and Consistency Control), a robust distributional RL framework that models values as continuous flows across time steps. By scaling value modeling through learning of a value flow field instead of isolated quantile predictions, DFPO captures richer state information for more accurate advantage estimation. To stabilize training under noisy feedback, DFPO further integrates conditional risk control and consistency constraints along value flow trajectories. Experiments on dialogue, math reasoning, and scientific tasks show that DFPO outperforms PPO, FlowRL, and other robust baselines under noisy supervision, achieving improved training stability and generalization.
Abstract:As Large Language Models increasingly automate complex, long-horizon tasks such as \emph{vibe coding}, a supervision gap has emerged. While models excel at execution, users often struggle to guide them effectively due to insufficient domain expertise, the difficulty of articulating precise intent, and the inability to reliably validate complex outputs. It presents a critical challenge in scalable oversight: enabling humans to responsibly steer AI systems on tasks that surpass their own ability to specify or verify. To tackle this, we propose Scalable Interactive Oversight, a framework that decomposes complex intent into a recursive tree of manageable decisions to amplify human supervision. Rather than relying on open-ended prompting, our system elicits low-burden feedback at each node and recursively aggregates these signals into precise global guidance. Validated in web development task, our framework enables non-experts to produce expert-level Product Requirement Documents, achieving a 54\% improvement in alignment. Crucially, we demonstrate that this framework can be optimized via Reinforcement Learning using only online user feedback, offering a practical pathway for maintaining human control as AI scales.
Abstract:Generative Reward Models (GenRMs) and LLM-as-a-Judge exhibit deceptive alignment by producing correct judgments for incorrect reasons, as they are trained and evaluated to prioritize Outcome Accuracy, which undermines their ability to generalize during RLHF. We introduce Rationale Consistency, a fine-grained metric that quantifies the alignment between the model's reasoning process and human judgment. Our evaluation of frontier models reveals that rationale consistency effectively discriminates among state-of-the-art models and detects deceptive alignment, while outcome accuracy falls short in both respects. To mitigate this gap, we introduce a hybrid signal that combines rationale consistency with outcome accuracy for GenRM training. Our training method achieves state-of-the-art performance on RM-Bench (87.1%) and JudgeBench (82%), surpassing outcome-only baselines by an average of 5%. Using RM during RLHF, our method effectively improves performance as demonstrated on Arena Hard v2, notably yielding a 7% improvement in creative writing tasks. Further analysis confirms that our method escapes the deceptive alignment trap, effectively reversing the decline in rationale consistency observed in outcome-only training.
Abstract:Nowadays, training and evaluating DeepResearch-generated reports remain challenging due to the lack of verifiable reward signals. Accordingly, rubric-based evaluation has become a common practice. However, existing approaches either rely on coarse, pre-defined rubrics that lack sufficient granularity, or depend on manually constructed query-specific rubrics that are costly and difficult to scale. In this paper, we propose a pipeline to train human-preference-aligned query-specific rubric generators tailored for DeepResearch report generation. We first construct a dataset of DeepResearch-style queries annotated with human preferences over paired reports, and train rubric generators via reinforcement learning with a hybrid reward combining human preference supervision and LLM-based rubric evaluation. To better handle long-horizon reasoning, we further introduce a Multi-agent Markov-state (MaMs) workflow for report generation. We empirically show that our proposed rubric generators deliver more discriminative and better human-aligned supervision than existing rubric design strategies. Moreover, when integrated into the MaMs training framework, DeepResearch systems equipped with our rubric generators consistently outperform all open-source baselines on the DeepResearch Bench and achieve performance comparable to that of leading closed-source models.
Abstract:Current language models (LMs) excel at reasoning over prompts using pre-trained knowledge. However, real-world tasks are far more complex and context-dependent: models must learn from task-specific context and leverage new knowledge beyond what is learned during pre-training to reason and resolve tasks. We term this capability context learning, a crucial ability that humans naturally possess but has been largely overlooked. To this end, we introduce CL-bench, a real-world benchmark consisting of 500 complex contexts, 1,899 tasks, and 31,607 verification rubrics, all crafted by experienced domain experts. Each task is designed such that the new content required to resolve it is contained within the corresponding context. Resolving tasks in CL-bench requires models to learn from the context, ranging from new domain-specific knowledge, rule systems, and complex procedures to laws derived from empirical data, all of which are absent from pre-training. This goes far beyond long-context tasks that primarily test retrieval or reading comprehension, and in-context learning tasks, where models learn simple task patterns via instructions and demonstrations. Our evaluations of ten frontier LMs find that models solve only 17.2% of tasks on average. Even the best-performing model, GPT-5.1, solves only 23.7%, revealing that LMs have yet to achieve effective context learning, which poses a critical bottleneck for tackling real-world, complex context-dependent tasks. CL-bench represents a step towards building LMs with this fundamental capability, making them more intelligent and advancing their deployment in real-world scenarios.
Abstract:User modeling characterizes individuals through their preferences and behavioral patterns to enable personalized simulation and generation with Large Language Models (LLMs) in contemporary approaches. However, existing methods, whether prompt-based or training-based methods, face challenges in balancing personalization quality against computational and data efficiency. We propose a novel framework CURP, which employs a bidirectional user encoder and a discrete prototype codebook to extract multi-dimensional user traits. This design enables plug-and-play personalization with a small number of trainable parameters (about 20M parameters, about 0.2\% of the total model size). Through extensive experiments on variant generation tasks, we show that CURP achieves superior performance and generalization compared to strong baselines, while offering better interpretability and scalability. The code are available at https://github.com/RaidonWong/CURP_code
Abstract:Training LLMs for code-related tasks typically depends on high-quality code-documentation pairs, which are costly to curate and often scarce for niche programming languages. We introduce BatCoder, a self-supervised reinforcement learning framework designed to jointly optimize code generation and documentation production. BatCoder employs a back-translation strategy: a documentation is first generated from code, and then the generated documentation is used to reconstruct the original code. The semantic similarity between the original and reconstructed code serves as an implicit reward, enabling reinforcement learning to improve the model's performance both in generating code from documentation and vice versa. This approach allows models to be trained using only code, substantially increasing the available training examples. Evaluated on HumanEval and MBPP with a 7B model, BatCoder achieved 83.5% and 81.0% pass@1, outperforming strong open-source baselines. Moreover, the framework demonstrates consistent scaling with respect to both training corpus size and model capacity.
Abstract:The evolution of Large Language Models (LLMs) into autonomous agents necessitates the management of extensive, dynamic contexts. Current benchmarks, however, remain largely static, relying on passive retrieval tasks that fail to simulate the complexities of agent-environment interaction, such as non-linear reasoning and iterative feedback. To address this, we introduce \textbf{AgentLongBench}, which evaluates agents through simulated environment rollouts based on Lateral Thinking Puzzles. This framework generates rigorous interaction trajectories across knowledge-intensive and knowledge-free scenarios. Experiments with state-of-the-art models and memory systems (32K to 4M tokens) expose a critical weakness: while adept at static retrieval, agents struggle with the dynamic information synthesis essential for workflows. Our analysis indicates that this degradation is driven by the minimum number of tokens required to resolve a query. This factor explains why the high information density inherent in massive tool responses poses a significantly greater challenge than the memory fragmentation typical of long-turn dialogues.
Abstract:Charts are a fundamental visualization format for structured data analysis. Enabling end-to-end chart editing according to user intent is of great practical value, yet remains challenging due to the need for both fine-grained control and global structural consistency. Most existing approaches adopt pipeline-based designs, where natural language or code serves as an intermediate representation, limiting their ability to faithfully execute complex edits. We introduce ChartE$^{3}$, an End-to-End Chart Editing benchmark that directly evaluates models without relying on intermediate natural language programs or code-level supervision. ChartE$^{3}$ focuses on two complementary editing dimensions: local editing, which involves fine-grained appearance changes such as font or color adjustments, and global editing, which requires holistic, data-centric transformations including data filtering and trend line addition. ChartE$^{3}$ contains over 1,200 high-quality samples constructed via a well-designed data pipeline with human curation. Each sample is provided as a triplet of a chart image, its underlying code, and a multimodal editing instruction, enabling evaluation from both objective and subjective perspectives. Extensive benchmarking of state-of-the-art multimodal large language models reveals substantial performance gaps, particularly on global editing tasks, highlighting critical limitations in current end-to-end chart editing capabilities.